Teacher teach student about role of chemistry in Agriculture science

Role of Chemistry in Agriculture Science

Dr. V. K. Chhibber

Dean Chemistry, BFIT

Introduction

The basic need of human beings is food. It is agriculture only that fulfills this need for the entire population of the world. Plants are called producers as they synthesize their own food using COfrom air and water from soil utilizing sunlight as a source of energy by a process known as photosynthesis. The rest of the food chain consists of consumers only. The practice of producing crops and livestock from the natural resources of the earth is called Agriculture. Modern agriculture includes agronomy, horticulture, animal husbandry, dairying, soil chemistry, etc.

Chemistry deals with compounds, both organic and inorganic, and agriculture deals with the production of organic products using both organic and inorganic inputs Thus Chemistry forms an integral part of agriculture from molecular to organ level. It plays a role from the basics of photosynthesis to the utilization of agricultural produce. The advancements in this practice are only because of active research carried out in chemistry and then its applications to cause the land to produce more abundantly and at the same time to protect it from deterioration and misuse. Role of Chemistry in agriculture can be classified as follows:

Photosynthesis:  

This natural process provides the basic building block for all agricultural products. The overall process is best shown by the net equation. 6CO2 + 6H2O ==> C6H12O6 + 6O2 . No chemical process is more important to live on Earth than photosynthesis. Without photosynthesis, not only would there be no plants, the planet could not sustain the life of any kind. Research in this area has led to understanding the mechanism and hence optimizing conditions for the maximization of this process.

Fertilizers:

Fertilizer is any organic or inorganic material of natural or synthetic origin that is added to a soil to supply one or more plant nutrients essential to the growth of plants. A recent assessment found that about 40 to 60% of crop yields are attributable to commercial fertilizer use.

Fertilizers can be divided into two categories: organic and inorganic. Organic fertilizers are derived from living systems and include animal manure, fish and bone meal, and compost. These organic fertilizers are decomposed by microorganisms in the soil to release their nutrients for use by plants. Chemical fertilizers are less complex and have high concentrations of chemicals that may be in short supply in the soil namely nitrogen, phosphorous, potassium,  calcium, magnesium, and sulfur. Fertilizers also provide micronutrients that are required in much smaller quantities namely boron, chloride, copper, iron, manganese, molybdenum, and zinc.

Inorganic fertilizer is synthesized using the Haber-Bosch process, which produces ammonia as the end product. This ammonia is used for other nitrogen fertilizers, such as anhydrous ammonium nitrate and urea. Now fertilizers with a slow release of nutrients have been developed.

Appropriate use of fertilizers to increase crop yield has counterbalanced loss of land due to urbanization and significantly supported global population growth, It has been estimated that almost half the people on the Earth are currently fed as a result of synthetic nitrogen fertilizer use.

Pesticides and Insecticides:

In order to minimize the damage of the crops by pests, a large variety of chemicals known as pesticides are used. Subclasses of this are herbicides, insecticides, fungicides, rodenticides, pediculicides, and biocides depending on its target. With active research in this field safer and greener pesticides are being developed

Insecticides are chemicals that are used to kill insects because they can spread livestock diseases, can eat stored grain, and can feed on growing crops. However not all insects are harmful, and certain species of insects are needed to pollinate plants to ensure that they set seeds.

These chemicals prevent crop losses to insects and other pests. One study found that not using pesticides reduced crop yields by about 10%. Another study.

Chemistry in other areas of agriculture:

Plastic pipes for improved irrigation:

Plastic was derived from chemistry and is widely used in agriculture. This has increased irrigation massively which results in a better environment for the crops to prosper in.

Storage and preservation of agricultural produce:

Sulfur dioxide is used to keep grain fresh and useable for a longer period of time. Food preservatives like sodium benzoate and salicylic acid are used for longer shelf life. New generation refrigerants have been developed. Chemicals are added to promote the ripening of fruits or the germination of seeds. Food packaging has advanced due to the material produced by advancements in chemistry. Agricultural chemistry has increased the diversity of the human diet and has led to the greater overall availability of food, both animal and plant.

Food Processing:

Development of Saccharin and sweeteners, Vitamins, and minerals. Consumers have benefited from new technologies that have enhanced the flavor, appearance, availability, and nutritional value of their food.

Chemicals from agricultural waste:

Advancement in Chemistry has resulted in the development of technologies to produce a variety of chemicals from agricultural waste. Production of alcohol from bagasse which is used as the feedstock for chemicals is a good example,

Conclusion:

Thus Chemistry has been and is still closely linked to the progress in the agriculture field. It provides innovative new ways to widen the boundaries of agriculture and combat potential problems and thus increase productivity and quality of produce…

Thank you for reading this blog hope you got your answer.

Other related topics: How to grow vegetables at home in India?, A Leading Institute in Dehradun for Agriculture Science, What is the importance of agriculture in our daily life?

2 thoughts on “Role of Chemistry in Agriculture Science”

  1. Modern agriculture depends quite heavily on the advances that have been made in science, and chemistry in particular, to maximize the yield of crops and animal products. Fertilizers, pesticides, and antibiotics play ever increasing roles in this field.
    By the way! The best essay writing service – https://www.easyessay.pro/
    And Happy New Year!

Leave a Comment

Your email address will not be published.